
Beam shape of uniform strength.•	
What is leaf spring and where it is used?•	
Stress and deformation analyses of leaf spring.•	

Designing of a leaf spring in terms of deter-•	
mination of the leaf ’s requisite cross- sectional 
dimension.

Leaf Springs

Leaf springs (sometimes also known as laminated springs) are made up of beams of uniform strength 
and are normally used in automobiles to absorb the shock and vibration produced by road undula-

tions, thereby providing comfort to passengers. Figure 17.1 shows a general arrangement of a typical 
semi-elliptical leaf spring.
 The figure also shows the different components of a typical leaf spring1. Figure 17.2 shows a typical 
application of the spring in an automobile.

Span 2L

Camber

Eye

Master leaf Central clamp

Graduated leaves
Rebound clip

Figure 17.1 Laminated semi-elliptical spring.

1An interested reader is further directed to refer to Reference (24) in the Bibliography section of the book to know 
 further details of a leaf spring.

Learning goaLS

After completing this chapter, you will be able to understand the following:
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742   •   Chapter 17—Leaf SpringS

 17.1 Beams of Uniform Strength

Let us consider a cantilever beam of a rectangular cross-section loaded at its free-end as shown in Figure 17.3. 
Now, we know that for such beams, the bending stress is same throughout the length of the beam.
 If we consider a section at a distance of x from the free-end of the beam as shown in Figure 17.3(a) 
and show its free-body diagram in Figure 17.3(b), we can find out the magnitude of the bending 
moment Mx prevailing at that section according to the equation:

 Mx = −Px (17.1)

Obviously, the magnitude of the maximum bending stress is given by:

σ = =





MC

I

Px
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bt
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2

1
12

3

Figure 17.2 Leaf spring in an automobile.

Figure 17.3 (a) Cantilever beam, (b) free-body diagram of any section.
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or σ = 6
2

Px

bt
 (17.2)

If we keep the thickness t of the beam section constant and vary the section width b along the beam 
length in such a way that everywhere the stress is same, say equal to so, then Eq. (17.2) can be used to 
define b as:

b
P

t
x=







6
2σo

or b = lx (17.3)

For a given value of P, the parameter λ σ= 6 2P t/ o  is constant and evidently the above Eq. (17.3) 
 suggests that b must then vary linearly with x as shown in the Figure 17.4(a).
 However, practically, absence of any material at the cantilever tip as shown in Figure 17.4(a) is 
unacceptable as load P (at the tip of the beam) then cannot be borne by it. This above design of beam 
is the basic element of a leaf spring.

 17.2 Deflection of Beam of Uniform Strength

As is evident from the previous Figure 17.4(a), the width of the section at a distance x from the free-end 
of the beam is given by:

b x
b

L
x( ) = 





o

(a)

L

b(x)

x

bo

(b)

A
P

b(x)

t

L A

y

x O

A–A section

Figure 17.4 Beam of uniform strength: (a) Top view of beam, (b) front view of beam.
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744   •   Chapter 17—Leaf SpringS

and centroidal area moment of inertia is given by:

I x b x t( ) ( )= 1

12
3

 =






1

12

3b t

L
x0

or I x
I

L
x( ) = 





0  (17.4)

To compute the bending deflection y, we use the flexure equation, Eq. (7.6) of Chapter 7 as:

EI
y

x
Mx

d

d

2

2 = −

Although in Chapter 7, we mostly used the above equation for a prismatic beam (i.e., beam with 
 constant EI ), now we use it for a non-prismatic beam as well. From Eq. (17.1), as Mx = −Px, we get

EI

L
x

y

x
Pxo d

d

2

2 =

or 
EI

L

y

x
Po d

d






=
2

2

Integrating successively with respect to x:

 
EI

L

y

x
Px Co d

d






= + 1  (17.5)

and 
EI

L
y

Px
C x Co





= + +
2

1 22
 (17.6)

Putting the boundary conditions of y = 0 and dy/dx = 0 at x = L in the above equations, we obtain:

C PL C
PL

1 2

2

2
= − =and

Thus, putting x = 0 in Eq. (17.6) we get the maximum deflection, which is the deflection of the beam 
at its free end as:

EI

L
Px

PLx
PL

x

o



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= − +
=

δmax

2 2

0
2 2
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or 
EI

L

PLo δmax =
2

2

or δmax = PL

EI

3

2 o

 (17.7)

Comparing the free-end deflection of a prismatic cantilever beam with area moment of inertia equal 
to Io, we note that the above deflection is 1.5 times more. This large deflection under load P is used to 
make the beam to act as a spring. If instead of a cantilever beam had we considered a simply  supported 
beam, the uniform strength would have led to the geometry known as Lozenge-shaped geometry as 
shown in Figure 17.5.
 As each half of the above beam can be modelled as a cantilever beam of uniform strength, we get 
from Eqs. (17.2) and (17.5) by putting L/2 in place of L and P/2 in place of P , the following relations 
for the lozenge-shaped beam:

 σo
o

= 3
2

PL

b t  

(17.8)

δmax = PL
LEI

3

3 o

 17.3 Leaf Spring

A leaf spring or a laminated spring is made up from a beam of uniform strength by cutting, say ng 
equal strips from the original beam of uniform strength and stacking them one on top of the other. 
The  construction is shown in Figure 17.6. 
 This arrangement of stacked plates produces cantilever-type leaf spring as shown in Figure 17.6(b). 
In Figure 17.6(a), a triangular plate of width bo (which is a cantilever of uniform strength) is cut into ng 
equal strips of width b of the central strip (1) where bo = ngb and stacked on as shown in  Figure 17.6(b)  

t t

b(x)

P

bo

P/2 P/2
L /2L /2

Figure 17.5 Lozenge-shaped beam.

SOM_Chapter 17.indd   745 4/24/2012   8:51:40 PM
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to form a cantilever-type leaf spring. In practice, one or more number of extra full-length plates of  uniform 
width are used to place on top of the graduated plate (1). This is done because to carry the load at the tip 
of plate (1) we need sufficient material to provide the necessary shear force. However, as plate (1) has a 
pointed tip, it is not possible to do so if no extra top plate(s) is/are used. This extra plate is known as the 
master leaf.
 Yet another variation of the laminated spring, known as the semi-elliptic spring as shown in 
Figure 17.1. It is used in practice, where a favourable curvature known as cambering is provided to 
the entire assembly of plates to carry more loads with uniform stress distribution using favourable 
 conditions of residual stresses. The load on the beam due to which this initial curvature can be reduced 
to zero is called proof load.
 In the following sections, we provide the analysis of the cantilever-type leaf springs, which is appli-
cable also for the semi-elliptic leaf springs.

Stress Deformation Analysis for Leaf Springs
Let us assume that to the top of the assembly of the ng number of graduated plates of width b, we 
use nm number of extra full-length master leaf each of uniform width b [i.e., width of the topmost 
graduated plate (1)]. Thus, essentially, we have a cantilever beam of width nmb and length L connected 
 parallel to the other cantilever beam of uniform strength of width ngb and length L as shown in the 
Figure 17.7. Clearly, through this arrangement, the applied load P is shared by both the beams. The 
parallel connectivity of the two beams is modelled as if the beams are connected by a massless rigid link 
connected at the free ends of the beams. Let Pm and Pg be the loads shared by the master leaf and the 
graduated leaf, respectively. Clearly,

 P = Pm + Pg (17.9)

Also, we note that the free-end deflections of the beams are equal as they are connected by a rigid link. 
Hence,

P L
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1
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bg/2

Figure 17.6 Cantilever leaf spring.
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or 
P

P

I

I
m

g

m

g

= ⋅3

2

where Im and Ig are second moments of area of the master leaf and graduated leaf, respectively. 
Therefore,
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g
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= 3

2
 (17.10)

Solving Eqs. (17.9) and (17.10), we get

 P
n

n n
Pm

m

m g

Load carried by master leaf=
+

=
3

3 2
 (17.11)

Beam of uniform strength

Beam of uniform width

Massless rigid link

Master leaf

P

t

t

Lnmb

ngb

LGraduated leaf

Figure 17.7 Parallel assembly of cantilever leaf springs.
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and P
n

n n
Pg

g

m g

Load carried by the graduated leaf=
+

=
2

3 2
 (17.12)

Now, maximum stress developed in the beams’ master and graduated leaves are as follows:

σm
m

m

=
6

2

P L

n bt

in the master leaf as it is a rectangular section. Putting Pm from Eq. (17.11), we get

 σm
m g

=
+

18

3 2 2( )n n
PL

bt
 (17.13)

The above equation gives us the maximum stress developed in the master leaf. Similarly, by putting the 
expression of Pg in the stress equation, we get the maximum stress in the graduated leaf as

 σg
m g

=
+

12

3 2 2n n
PL

bt
 (17.14)

Comparing Eqs. (17.13) and (17.14), we observe that the stress developed in the master leaf is 50% 
more than that of the laminated plates. Obviously, this limits the load-carrying capacity of the entire 
assembly. Hence, in practice, the master leaf is given a different radius of curvature, thereby putting 
favourable residual stress in it in such a way that when the load is applied to the assembly, an equal 
stress distribution exists and the system can carry more load. Let us now focus on the deflection of the 
entire assembly. If dmax is the maximum free-end deflection of the assembly, then from Eq. (17.7):

δmax =
P L

EI
g

g

3

2

Now from Eq. (17.12) and noting I n btg g= 3 12/ ,  we get

δmax =
+

6 2

3 2

3

3

L

n bt E

n

n n
P

g

g

m g

or δmax
( )

=
+

12

3 2

3

3

PL

Ebt n nm g

 (17.15)

Equations (17.13) and (17.14) indicate the strength of the spring and Eq. (17.15) gives the rigidity of the 
assembly. We have to note that the above modelling is approximate, and hence the foregoing equations 
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approximately depict the strength and deformation analysis of the cantilever-type of  laminated springs. 
Recall that these equations are also applicable to the semi-elliptic springs.

 exampLe 17.1 

A cantilever leaf spring is designed to meet the following specifications:
 Load on the spring = 2 kN
 Total number of leaves = 8
 Number of extra full-length leaves = 2
 Width of each leaf = 50 mm
 Length of spring = 500 mm
 Design stress in tension = 350 MPa
What is the thickness of leaf required to meet the above requirements?

Solution
Assuming no pre-stressing, we observe that stress in the master leaf is the deciding factor as its stress 
is 50% more than that in the graduated leaves. From Eq. (17.13), we get

σm
m g

=
+

18 1

3 22

PL

bt n n

So, the thickness of the leaf is given by

or t
PL

b n n
=

+
18 1

3 2σm m g

Putting the necessary values, we get

t =
+

×

=

⋅ −( )( )( )( . )

( )( )( . ) ( ) ( )

.

18 2 10 0 5

350 10 0 05

1

3 2 2 8
10

6 84

3

6
3 mm

  mm

Thus, the required thickness of the plates is 6.84 mm. [Answer]

 exampLe 17.2 

A laminated semi-elliptic spring under a central load of 12 kN is to have an effective length of 1 m and 
is not allowed to deflect more than 75 mm. The spring has 10 leaves, 2 of which are of full length and are 
pre-stressed so that all leaves have the same stress after the full load is applied. All leaves have the same width 
and thickness. The maximum stress in the leaves is not to exceed 350 MPa. Find the width and thickness of 
the plates. Assume that for the spring material, E = 200 GPa.
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Solution
In the given condition, the stresses are all equal in the leaves. We thus, consider the semi-elliptic 
spring as two cantilever-type leaf springs connected as shown in Figure 17.8.

A C

B P/2 = 6 × 103 NP/2 = 6 × 103 N

P = 12 × 103 N

500 mm = L /2

1000 mm = L

Figure 17.8 Arrangement of beams in Example 17.2.

As shown in the figure, we consider the portion BC of the beam as the cantilever-type leaf spring with 
load P/2 and length L/2. Applying the stress and deflection equations, and by noting that stresses are 
all equal in the leaves, we get

σmax = =







=6
6

4 3

22 2 2

M

nbt

PL

nbt

PL

nbt

where n is the total number of leaves, b denotes plate width and t is plate thickness. (Note that the 
above equation is applied as the stresses in the leaves are all equal because of pre-stressing.)
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2 10 350
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bt= ⇒ =  

or bt 2 35142 86= .  mm  (1)

Again, in Eq. (17.15) by putting P/2 and L/2 in place of P and L, respectively, we get

δmax
( )

=













+
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+

3
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or bt
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E n nm g

3
33

4 3 2
=
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× + ×

3

4
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3 3

3
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or     bt 3 427272 73= .  mm  (2)

Now from Eqs. (1) and (2), we get

b = 183.1 mm and t = 5.30 mm

Thus, the required width and thickness of the plates are 183.1 mm and 5.30 mm, respectively.
 [Answer]

 exampLe 17.3 

A 100 mm outer diameter steel coil spring having 10 active coils of 2.5 mm diameter wire is in contact 
with a 750 mm long steel cantilever spring having 6 graduated leaves, 100 mm wide and 6.5 mm thick as 
shown in Figure 17.9. Assume for steel, E = 200 GPa.
(a)  Calculate force F, which when gradually applied to the top of the coil spring will cause the cantilever 

spring to deflect by 25 mm.
(b) What will be the maximum shear stress in the coil spring?

750 mm

F

Figure 17.9 Problem 17.3.

Solution
We observe from the figure that the coiled spring and the graduated leaf spring are in series arrange-
ment and carry the same axial load F.

(a) By applying deflection equation, Eq. (17.15) for the leaf spring, we get

δmax
( )

=
+

12

3 2

3

3

FL

Ebt n nm g

or F
Ebt n n

L
=

+( ) ( )max
3

3

3 2

12

δ m g
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Now putting the given values in the above expression, we get

F = × + ×200 10 100 6 5 25 3 0 2 6

12 750

3 3

3

( )( )( . ) ( )( )

( )
N

or F = 325.5 N [Answer]

(b)  Recalling our Eqs. (2.15) and (2.16) from Section 2.5, we get the following results. The maxi-
mum shear stress in the coiled spring considering Wahl’s correction factor is

τ
πmax

.= −
−

+





8 4 1

4 4

0 615
3

FD

d

C

C C

Putting C D d= = =/ / .100 12 5 8

τ
πmax

( )( . )( )

( . )

( )

( )

.= −
−

+





8 325 5 100

12 5

4 8 1

4 8 4

0 615

83 2

N

mm

or τmax .= 50 25 MPa  [Answer]

and considering theoretical stress equation, we get

τ
πmax = +





8
1

23

FD

d

d

D

 = +





8
1

0 5
3

FD

d Cπ
.

 = +





( )( . )( )

( . )

.8 325 5 100

12 5
1

0 5

83 2π
N

mm

or τmax .= 45 1 MPa  [Answer]

  Summary

In this chapter, we have carefully introduced the 
concept of beam of uniform strength. From that 
concept, we went on discussing the use of such 

beams with constant thickness as spring elements, 
as they suffer more deflection than their ordi-
nary counterparts. These designs (two of which 
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have been considered – cantilever type, simply 
 supported type) find their useful practical applica-
tions especially in the case of automobiles.
 A preliminary approximate stress analy-
sis of these springs, known as leaf springs, have 

been presented along with their deformation 
 characteristics also. This chapter will surely be 
able to introduce the students to a complex design 
analysis of leaf springs, which they will take up in 
their Machine Design course.

  Key terms

Leaf spring

Laminated spring

Uniform strength beam

Semi-elliptical leaf spring

Rectangular cross-section

Cantilever beam

Prismatic beam

Lozenge-shaped beam

Cantilever-type leaf spring

Master leaf

Graduated leaf

Coiled spring

Wahl’s correction factor

  review Questions

 1. What is a leaf spring?

 2. Explain the function of a leaf spring.

 3. Why is a leaf spring used?

 4. What is proof load?

 5. What do you mean by beam of uniform 
strength?

 6. Discuss the construction of a leaf spring.

 7. Derive the stress deformation theory of leaf 
springs.

  numerical problems

 1. A 1 m long cantilever spring is composed of 
8 graduated leaves and 1 additional full-
length leaf. The leaves are 45 mm wide. 
A load of 2000 N at the free-end of the 
spring causes a deflection of 75 mm. 
Assuming no pre- stressing, calculate the 
maximum  bending stress developed in the 

spring. Assume that for the spring material,  
E = 200 GPa.

 2. Repeat the above problem assuming pre-
stressing of the additional full-length leaf.

 3. For Problem 1, calculate the thickness of the 
leaf required.
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  answers

Numerical Problems

 1. 277 MPa

 2. 195 MPa

 3. 12.3 mm
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